Chronic d-serine supplementation impairs insulin secretion
نویسندگان
چکیده
منابع مشابه
Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells
Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 β-cells by 59% and 79% (p<0.01) at glucose conc...
متن کاملTelomerase deficiency impairs glucose metabolism and insulin secretion
Reduced telomere length and impaired telomerase activity have been linked to several diseases associated with senescence and aging. However, a causal link to metabolic disorders and in particular diabetes mellitus is pending. We here show that young adult mice which are deficient for the Terc subunit of telomerase exhibit impaired glucose tolerance. This is caused by impaired glucose-stimulated...
متن کاملVitamin D, Insulin Secretion, Sensitivity, and Lipids
OBJECTIVE Vitamin D deficiency is associated with an unfavorable metabolic profile in observational studies. The intention was to compare insulin sensitivity (the primary end point) and secretion and lipids in subjects with low and high serum 25(OH)D (25-hydroxyvitamin D) levels and to assess the effect of vitamin D supplementation on the same outcomes among the participants with low serum 25(O...
متن کاملMiR‐335 overexpression impairs insulin secretion through defective priming of insulin vesicles
MicroRNAs contribute to the maintenance of optimal cellular functions by fine-tuning protein expression levels. In the pancreatic β-cells, imbalances in the exocytotic machinery components lead to impaired insulin secretion and type 2 diabetes (T2D). We hypothesize that dysregulated miRNA expression exacerbates β-cell dysfunction, and have earlier shown that islets from the diabetic GK-rat mode...
متن کاملDeficiency of phosphofructo-1-kinase/muscle subtype in humans impairs insulin secretion and causes insulin resistance.
Non-insulin-dependent diabetes mellitus (NIDDM) is caused by peripheral insulin resistance and impaired beta cell function. Phosphofructo-1-kinase (PFK1) is a rate-limiting enzyme in glycolysis, and its muscle subtype (PFK1-M) deficiency leads to the autosomal recessively inherited glycogenosis type VII Tarui's disease. It was evaluated whether PFK1-M deficiency leads to alterations in insulin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Metabolism
سال: 2018
ISSN: 2212-8778
DOI: 10.1016/j.molmet.2018.07.002